Differential response of p53 target genes to p73 overexpression in SH-SY5Y neuroblastoma cell line
Author(s) -
David Goldschneider,
Étienne Blanc,
Gilda Raguénez,
Michel Barrois,
Agnès Legrand,
G. Le Roux,
Hédi Haddada,
Jean Bénard,
Sétha Douc-Rasy
Publication year - 2003
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.00834
Subject(s) - biology , gene isoform , cell culture , neuroblastoma , microbiology and biotechnology , cancer research , tumor suppressor gene , gene , cell type , alpha (finance) , cell , carcinogenesis , genetics , construct validity , nursing , patient satisfaction , medicine
p73, the first p53 gene homologue, encodes an array of p73 proteins including p73 alpha full-length (TAp73 alpha) and amino-truncated isoforms (Delta Np73 alpha), two proteins with opposite biological functions. TAp73 alpha can induce tumor suppressive properties, while Delta Np73 alpha antagonizes p53 as well as TAp73 in a dominant-negative manner. In human malignant neuroblasts, p53 protein is wild-type but known to be excluded from the nucleus, therefore disabling its function as a tumor suppressor. The present study investigates whether there is a functional link between p73 isoforms and p53 in neuroblastoma. Experiments were performed on two neuroblastoma cell lines differing in their p53 status, e.g. wild-type p53 SH-5Y5Y cells and mutated p53 IGR-N-91 cells. Data indicate that (i) both TA- and Delta N-p73 alpha enhance p53 protein level in SH-SY5Y cells, whereas level remains unchanged in IGR-N-91 cells; (ii) only in SH-SY5Y cells does forced TAp73 alpha overexpression markedly induce nuclear accumulation of p53 protein; (iii) p21 protein expression is increased in both cell lines infected with TAp73, suggesting that, in IGR-N-91 cells, p21 is induced by p73 through a p53-independent pathway; (iv) in the SHSY5Y cell line, Btg2 expression is strongly enhanced in cells overexpressing TA, and to a lesser extent in cells overexpressing Delta N. Taken together our results suggest that TAp73 may restore p53 function in NB with wild-type nonfunctional p53, but not in NB with mutated p53.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom