z-logo
open-access-imgOpen Access
VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension
Author(s) -
Celeste M. Nelson,
Christopher S. Chen
Publication year - 2003
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.00680
Subject(s) - microbiology and biotechnology , biology , cadherin , cell growth , cytoskeleton , cell , extracellular matrix , cell adhesion , contact inhibition , actin , actin cytoskeleton , myosin , ve cadherin , biochemistry
Engagement of vascular endothelial (VE)-cadherin leads to the cessation of proliferation commonly known as 'contact inhibition'. We show that VE-cadherin inhibits growth by mediating changes in cell adhesion to the extracellular matrix. Increasing cell-cell contact decreased cell spreading and proliferation, which was reversed by blocking engagement of VE-cadherin. Using a new system to prevent the cadherin-induced changes in cell spreading, we revealed that VE-cadherin paradoxically increased proliferation. Treating cells with inhibitors of PKC and MEK abrogated the stimulatory signal at concentrations that disrupted the formation of actin fibers across the cell-cell contact. Directly disrupting actin fibers, blocking actin-myosin-generated tension, or inhibiting signaling through Rho specifically inhibited the cadherin-induced proliferative signal. By progressively altering the degree to which cell-cell contact inhibited cell spreading, we show that cell-cell contact ultimately increased or decreased the overall proliferation rate of the population by differentially shifting the balance between the two opposing proliferative cues. The existence of opposing growth signals induced by VE-cadherin that are both mediated through crosstalk with cytoskeletal structure highlights the complex interplay of mechanical and chemical signals with which cells navigate in their physical microenvironment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom