z-logo
open-access-imgOpen Access
Bcl-2 expression decreases cadherin-mediated cell-cell adhesion
Author(s) -
Laiji Li,
Jody Backer,
Annisa S. K. Wong,
Erin L. Schwanke,
Brian Stewart,
Manijeh Pasdar
Publication year - 2003
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.00644
Subject(s) - downregulation and upregulation , biology , microbiology and biotechnology , cadherin , cell adhesion , cell growth , contact inhibition , apoptosis , cell , intracellular , cell junction , carcinogenesis , cell culture , transcription factor , cancer , biochemistry , genetics , gene
Bcl-2, a member of the apoptosis-regulating family of proteins confers a survival advantage on cells by inhibiting apoptosis. Bcl-2 expression is estrogen-responsive and high in various tumors. Overexpression of Bcl-2 has been associated with the loss of contact inhibition, unregulated growth and foci formation in culture. In this study, we have examined the effects of bcl-2 overexpression and expression on cell-cell adhesion in MCF-7 and MDCK epithelial cell lines respectively. Overexpression of Bcl-2 in estrogen receptor-positive MCF-7 mammary carcinoma cells led to decreased cell surface E-cadherin and the disruption of junctional complexes concurrent with intracellular redistribution of their components. Particularly noticeable, was the partial nuclear localization of the tight junction-associated protein ZO-1 which coincided with upregulation of ErbB2. The expression of this EGF co-receptor is regulated by the ZO-1-associated transcription factor ZONAB. Growth in estrogen-depleted media led to downregulation of Bcl-2 expression and upregulation and membrane localization of all junctional proteins. Similar disruption in junctions, accompanied by decreased transepithelial resistance, was observed when Bcl-2 was expressed in MDCK cells. These results strongly suggest that Bcl-2 expression decreases the level of functional E-cadherin thereby interfering with junction formation. The inhibition of junction formation decreases cell-cell adhesion leading to the loss of contact inhibition, which, in vivo, can lead to unregulated growth and tumorigenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom