z-logo
open-access-imgOpen Access
A p50-like Y-box protein with a putative translational role becomes associated with pre-mRNA concomitant with transcription
Author(s) -
Teresa Soop,
Dmitry Nashchekin,
Jian Zhao,
Xin Sun,
Alla T. Alzhanova-Ericsson,
Birgitta Björkroth,
Lev P. Ovchinnikov,
Bertil Daneholt
Publication year - 2003
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.00353
Subject(s) - biology , messenger rna , microbiology and biotechnology , ribonucleoprotein , cytoplasm , amino acid , transcription (linguistics) , polysome , polytene chromosome , gene isoform , complementary dna , rna , gene , biochemistry , drosophila melanogaster , ribosome , linguistics , philosophy
In vertebrates free messenger ribonucleoprotein (RNP) particles and polysomes contain an abundant Y-box protein called p50 (YB-1), which regulates translation, presumably by affecting the packaging of the RNA. Here, we have identified a p50-like protein in the dipteran Chironomus tentans and studied its relation with the biogenesis of mRNA in larval salivary glands. The salivary gland cells contain polytene chromosomes with the transcriptionally active regions blown up as puffs. A few giant puffs, called Balbiani rings (BRs), generate a transcription product, a large RNP particle, which can be visualised (with the electron microscope) during its assembly on the gene and during its transport to and through the nuclear pores. The p50-like protein studied, designated Ct-p40/50 (or p40/50 for short), was shown to contain a central cold-shock domain, an alanine- and proline-rich N-terminal domain, and a C-terminal domain with alternating acidic and basic regions, an organisation that is characteristic of p50 (YB-1). The p40/50 protein appears in two isoforms, p40 and p50, which contain 264 and 317 amino acids, respectively. The two isoforms share the first 258 amino acids and thus differ in amino-acid sequence only in the region close to the C-terminus. When a polyclonal antibody was raised against p40/50, western blot analysis and immunocytology showed that p40/50 is not only abundant in the cytoplasm but is also present in the nucleus. Immunolabelling of isolated polytene chromosomes showed that p40/50 appears in transcriptionally active regions, including the BRs. Using immunoelectron microscopy we revealed that p40/50 is added along the nascent transcripts and is also present in the released BR RNP particles in the nucleoplasm. Finally, by UV crosslinking in vivo we showed that p40/50 is bound to both nuclear and cytoplasmic poly(A) RNA. We conclude that p40/50 is being added cotranscriptionally along the growing BR pre-mRNA, is released with the processed mRNA into the nucleoplasm and probably remains associated with the mRNA both during nucleocytoplasmic transport and protein synthesis. Given that the p40/p50 protein, presumably with a role in translation, is loaded onto the primary transcript concomitant with transcription, an early programming of the cytoplasmic fate of mRNA is indicated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom