Polo boxes form a single functional domain that mediates interactions with multiple proteins in fission yeast polo kinase
Author(s) -
Nicola Reynolds,
Hiroyuki Ohkura
Publication year - 2003
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.00314
Subject(s) - polo like kinase , biology , microbiology and biotechnology , plk1 , mitosis , cell cycle , cell cycle protein , yeast , spindle pole body , schizosaccharomyces pombe , kinase , schizosaccharomyces , cyclin dependent kinase 1 , cell division , spindle apparatus , genetics , saccharomyces cerevisiae , cell
Polo kinases play multiple roles in cell cycle regulation in eukaryotic cells. In addition to the kinase domain, conservation at the primary sequence level is also found in the non-catalytic region mainly in three blocks, namely the polo boxes. Although several studies have implicated the polo boxes in protein localisation, no systematic study to elucidate the roles of individual polo boxes has been carried out. Here we show, by using fission yeast, that the polo boxes form a single functional unit that is essential for both cellular function and cell-cycle-regulated localisation to the spindle pole bodies. Various polo box mutations abolish the mitotic arrest seen upon overexpression of plo1 but do not prevent the untimely septation seen under these conditions, showing that the functions of Plo1 may be separated. Plo1 interacts with multiple proteins including cell cycle regulators in a polo-box-dependent manner. Isolation of mutants that differentially disrupt these interactions revealed a role for the polo boxes in mediating protein-protein interactions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom