z-logo
open-access-imgOpen Access
Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: a single-cell analysis
Author(s) -
Heiko Düßmann,
Markus Rehm,
Donat Kögel,
Jochen H.M. Prehn
Publication year - 2002
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.00236
Subject(s) - depolarization , biology , membrane potential , mitochondrial apoptosis induced channel , mitochondrion , oligomycin , microbiology and biotechnology , protonophore , inner mitochondrial membrane , cytochrome c , atp–adp translocase , apoptosis , cytosol , biophysics , biochemistry , atpase , enzyme
Little is known about the temporal relationship between mitochondrial and plasma membrane potential changes and outer mitochondrial membrane permeabilization during apoptosis. Confocal imaging of breast carcinoma and HeLa cells stably transfected with cytochrome-C-GFP demonstrated that mitochondria rapidly depolarized after the release of the fusion protein into the cytosol. Of note, mitochondria did not completely depolarize but established a new steady-state level that could be further dissipated by treatment with the protonophore carbonyl cyanide p-trifluoromethoxy-phenylhydrazone. Treatment with the F(O)F(1)-ATP-synthase inhibitor oligomycin likewise induced a collapse of this steady-state level, suggesting that F(O)F(1)-ATP-synthase reversal maintained mitochondrial potential after outer mitochondrial membrane permeabilization. Treatment with a broad spectrum caspase inhibitor failed to inhibit the partial depolarization of mitochondria during apoptosis, yet potently abolished the activation of effector caspases detected by fluorescence resonance energy transfer analysis in the same experiment. Interestingly, the onset of mitochondrial depolarization was always coupled with a depolarization of the plasma membrane potential. This was associated with the degradation of the regulatory Na(+)/K(+)-ATPase beta-subunit, and both events were blocked by caspase inhibition. Our results demonstrate that outer mitochondrial membrane permeabilization coordinates the depolarization of both membrane potentials during apoptosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom