z-logo
open-access-imgOpen Access
Structure of laminin substrate modulates cellular signaling for neuritogenesis
Author(s) -
Elisabete dos Santos Freire,
Flávia Carvalho Alcântara Gomes,
Rafael Linden,
Vivaldo MouraNeto,
Tatiana CoelhoSampaio
Publication year - 2002
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.00173
Subject(s) - laminin , neurite , biology , microbiology and biotechnology , biophysics , extracellular matrix , basement membrane , biochemistry , in vitro
Laminin, a major component of basement membranes, can self-assemble in vitro into a typical mesh-like structure, according to a mass-action-driven process. Previously, we showed that pH acidification dramatically increased the efficiency of laminin self-assembly, practically abolishing the necessity for a minimal protein concentration. Here we have characterized the morphologies of laminin matrices produced in either neutral or acidic conditions and compared their capacities to induce neuritogenesis of rat embryonic cortical neurons. Although laminin matrices formed in neutral buffer presented aggregates of heterogeneous morphology, the acidic matrix consisted of a homogeneous hexagonal sheet-like structure. The latter was comparable to the matrix assembled in vivo at the inner limiting membrane of the retina in newborn rats, shown here, and to matrices secreted by cultivated cells, shown elsewhere. The average neurite length of cortical neurons plated on acidic matrices was 244.9 micro m, whereas on neutral matrices this value dropped to 104.1 micro m. Increased neuritogenesis on the acidic matrix seemed to be associated with a higher degree of neuronal differentiation, since cell proliferation was immediately arrested upon plating, whereas on neutral matrices, the cell number increased six-fold within 24 hours. Investigation of the mechanisms mediating neurite outgrowth on each condition revealed that the extensive neuritogenesis observed on the acidic matrix involved activation of protein kinase A, whereas moderate neuritogenesis on neutral laminin was mediated by activation of protein kinase C and/or myosin light-chain kinase. Explants of cerebral cortex from P2 rats did not grow on the neutral laminin substrate but presented extensive cell migration and neurite outgrowth on the acidic laminin matrix. We propose that laminin can self-assemble independently of cell contact and that the assembling mode differentially modulates neuritogenesis and neuroplasticity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom