
The `Spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families
Author(s) -
Katja Röper,
Stephen L. Gregory,
Nicholas H. Brown
Publication year - 2002
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.00157
Subject(s) - spectrin , biology , cytoskeleton , microbiology and biotechnology , genetics , cell
Recent studies have characterised a family of giant cytoskeletal crosslinkers encoded by the short stop gene in Drosophila and the dystonin/BPAG1 and MACF1 genes in mammals. We refer to the products of these genes as spectraplakins to highlight the fact that they share features with both the spectrin and plakin superfamilies. These genes produce a variety of large proteins, up to almost 9000 residues long, which can potentially extend 0.4 μm across a cell. Spectraplakins can interact with all three elements of the cytoskeleton: actin, microtubules and intermediate filaments. The analysis of mutant phenotypes in BPAG1 in mouse and short stop in Drosophila demonstrates that spectraplakins have diverse roles. These include linking the plasma membrane and the cytoskeleton, linking together different elements of the cytoskeleton and organising membrane domains.