z-logo
open-access-imgOpen Access
Ultrastructural characterization of endoplasmic reticulum — Golgi transport containers (EGTC)
Author(s) -
Heinrich Horstmann,
Chee Peng Ng,
Bor Luen Tang,
Wanjin Hong
Publication year - 2002
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.00115
Subject(s) - copii , golgi apparatus , copi , biology , endoplasmic reticulum , microbiology and biotechnology , vesicular transport proteins , vesicle , vesicular stomatitis virus , vesicular transport protein , transport protein , secretory pathway , cytoplasm , biochemistry , membrane , virus , virology , vacuole , vacuolar protein sorting
Recent observations made in live cells expressing green fluorescent protein (GFP)-tagged cargo markers have demonstrated the existence of large, mobile transport intermediates linking peripheral ER exit sites (ERES) to the perinuclear Golgi. Using a procedure of rapid ethane freezing, we examined ultrastructurally the intermediates involved in ER-Golgi transport of the vesicular stomatitis virus (VSV) G protein. When released at the permissive temperature of 32 degrees C, VSVG is first found to be concentrated in pleiomorphic, membrane-bound structures (of about 0.4 to 1 microm in diameter) with extensive budding profiles. These structures are devoid of COPII components and Golgi markers, but are enriched in COPI, the retrograde cargo ERGIC53, and the tethering protein p115. The structures appear to be able to undergo fusion with the Golgi stack and are tentatively referred to as ER-Golgi transport containers, or EGTCs. VSVG protein exiting the ERES at 15 degrees C is first found in clusters or strings of COPII-containing small vesicles, and morphological analysis indicates that these clusters and strings of COPII vesicles may coalesce by homotypic fusion to form the EGTCs. Together with the large transport containers mediating transport from the trans-Golgi network to the plasma membrane, EGTCs represents an emerging class of large membranous structures mediating anterograde transport between the major stations of the exocytic pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom