A cell line with characteristics of the periodontal ligament fibroblasts is negatively regulated for mineralization and Runx2/Cbfa1/Osf2 activity, part of which can be overcome by bone morphogenetic protein-2
Author(s) -
Yoshinori Saito,
Tatsuya Yoshizawa,
Fumio Takizawa,
Mika Ikegame,
Osamu Ishibashi,
Kazuhiro Okuda,
Kohji Hara,
Kotaro Ishibashi,
Masuo Obinata,
Hiroyuki Kawashima
Publication year - 2002
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.00098
Subject(s) - bone sialoprotein , periodontal fiber , cementogenesis , biology , microbiology and biotechnology , runx2 , cementum , bone morphogenetic protein 6 , bone morphogenetic protein 2 , bone morphogenetic protein , population , osteocalcin , cell culture , alkaline phosphatase , osteoblast , bone morphogenetic protein 7 , pathology , gene , in vitro , genetics , dentistry , biochemistry , medicine , environmental health , dentin , enzyme
The periodontal ligament (PDL) is a connective tissue located between the cementum of teeth and the alveolar bone of the mandibula. It plays an integral role in the maintenance and regeneration of periodontal tissue. The cells responsible for maintaining this tissue are thought to be fibroblasts, which can be either multipotent or composed of heterogenous cell populations. However, as no established cell lines from the PDL are available, it is difficult to assess what type of cell promotes all of these functions. As a first step to circumvent this problem, we have cloned and characterized cell lines from the PDL from mice harboring a temperature-sensitive SV 40 large T-antigen gene. RT-PCR and in situ hybridization studies demonstrated that a cell line, designated PDL-L2, mimics the gene expression of the PDL in vivo: it expresses genes such as alkaline phosphatase, type I collagen, periostin, runt-related transcription factor-2 (Runx2) and EGF receptor, but does not express genes such as bone sialoprotein and osteocalcin. Unlike osteoblastic cells and a mixed cell population from the PDL, PDL-L2 cells do not produce mineralized nodules in the mineralization medium. When PDL-L2 cells were incubated in the presence of recombinant human bone morphogenetic protein-2 alkaline phosphatase activity increased and mineralized nodules were eventually produced, although the extent of mineralization is much less than that in osteoblastic MC3T3-E1 cells. Furthermore, PDL-L2 cells appeared to have a regulatory mechanism by which the function of Runx2 is normally suppressed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom