z-logo
open-access-imgOpen Access
DNA methylation safeguards the generation of hematopoietic stem and progenitor cells by repression of Notch signaling
Author(s) -
Yan Li,
Chao Tang,
Fan Liu,
Caiying Zhu,
Feng Liu,
Ping Zhu,
Lu Wang
Publication year - 2022
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.200390
Subject(s) - biology , notch signaling pathway , microbiology and biotechnology , progenitor cell , dna methylation , zebrafish , haematopoiesis , stem cell , psychological repression , genetics , signal transduction , gene , gene expression
The earliest hematopoietic stem and progenitor cells (HSPCs) are generated from the ventral wall of the dorsal aorta, through endothelial-to-hematopoietic transition during vertebrate embryogenesis. Notch signaling is crucial for HSPC generation across vertebrates; however, the precise control of Notch during this process remains unclear. In the present study, we used multi-omics approaches together with functional assays to assess global DNA methylome dynamics during the endothelial cells to HSPCs transition in zebrafish, and determined that DNA methyltransferase 1 (Dnmt1) is essential for HSPC generation via repression of Notch signaling. Depletion of dnmt1 resulted in decreased DNA methylation levels and impaired HSPC production. Mechanistically, we found that loss of dnmt1 induced hypomethylation of Notch genes and consequently elevated Notch activity in hemogenic endothelial cells, thereby repressing the generation of HSPCs. This finding deepens our understanding of HSPC specification in vivo, which will provide helpful insights for designing new strategies for HSPC generation in vitro.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom