Ret signaling in ureteric bud epithelial cells controls cell movements, cell clustering and bud formation
Author(s) -
Adam Packard,
William H. Klein,
Frank Costantini
Publication year - 2021
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.199386
Subject(s) - ureteric bud , biology , mesenchyme , microbiology and biotechnology , morphogenesis , progenitor cell , cell , epithelium , fate mapping , kidney development , anatomy , stem cell , mesenchymal stem cell , genetics , gene , embryonic stem cell
Ret signaling promotes branching morphogenesis during kidney development, but the underlying cellular mechanisms remain unclear. While Ret-expressing progenitor cells proliferate at the ureteric bud tips, some of these cells exit the tips to generate the elongating collecting ducts, and in the process turn off Ret. Genetic ablation of Ret in tip cells promotes their exit, suggesting that Ret is required for cell rearrangements that maintain the tip compartments. Here, we examine the behaviors of ureteric bud cells that are genetically forced to maintain Ret expression. These cells move to the nascent tips, and remain there during many cycles of branching; this tip-seeking behavior may require positional signals from the mesenchyme, as it occurs in whole kidneys but not in epithelial ureteric bud organoids. In organoids, cells forced to express Ret display a striking self-organizing behavior, attracting each other to form dense clusters within the epithelium, which then evaginate to form new buds. The ability of forced Ret expression to promote these events suggests that similar Ret-dependent cell behaviors play an important role in normal branching morphogenesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom