Arabidopsis vascular complexity and connectivity controls PIN-FORMED1 dynamics and lateral vein patterning during embryogenesis
Author(s) -
Makoto Yanagisawa,
Arthur Poitout,
Marisa S. Otegui
Publication year - 2021
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.197210
Subject(s) - biology , arabidopsis , anatomy , evolutionary biology , microbiology and biotechnology , neuroscience , genetics , gene , mutant
Arabidopsis VASCULATURE COMPLEXITY AND CONNECTIVITY (VCC) is a plant-specific transmembrane protein that controls the development of veins in cotyledons. Here, we show that the expression and localization of the auxin efflux carrier PIN-FORMED1 (PIN1) is altered in vcc developing cotyledons and that overexpression of PIN1-GFP partially rescues vascular defects of vcc in a dosage-dependent manner. Genetic analyses suggest that VCC and PINOID (PID), a kinase that regulates PIN1 polarity, are both required for PIN1-mediated control of vasculature development. VCC expression is upregulated by auxin, likely as part of a positive feedback loop for the progression of vascular development. VCC and PIN1 localized to the plasma membrane in pre-procambial cells but were actively redirected to vacuoles in procambial cells for degradation. In the vcc mutant, PIN1 failed to properly polarize in pre-procambial cells during the formation of basal strands, and instead, it was prematurely degraded in vacuoles. VCC plays a role in the localization and stability of PIN1, which is crucial for the transition of pre-procambial cells into procambial cells that are involved in the formation of basal lateral strands in embryonic cotyledons.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom