z-logo
open-access-imgOpen Access
Golgi localization of the LIN-2/7/10 complex points to a role in basolateral secretion of LET-23 EGFR in the Caenorhabditis elegans vulval precursor cells
Author(s) -
Kimberley D. Gauthier,
Christian E. Rocheleau
Publication year - 2021
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.194167
Subject(s) - biology , caenorhabditis elegans , golgi apparatus , microbiology and biotechnology , colocalization , cytoplasm , epithelial polarity , endosome , secretion , membrane protein , cell , biochemistry , membrane , gene , endoplasmic reticulum , intracellular
The evolutionarily conserved LIN-2 (CASK)/LIN-7 (Lin7A-C)/LIN-10 (APBA1) complex plays an important role in regulating spatial organization of membrane proteins and signaling components. In Caenorhabditis elegans, the complex is essential for the development of the vulva by promoting the localization of the sole Epidermal growth factor receptor (EGFR) ortholog LET-23 to the basolateral membrane of the vulva precursor cells where it can specify the vulval cell fate. To understand how the LIN-2/7/10 complex regulates receptor localization, we determined its expression and localization during vulva development. We found that LIN-7 colocalizes with LET-23 EGFR at the basolateral membrane, whereas the LIN-2/7/10 complex colocalizes with LET-23 EGFR at cytoplasmic punctae that mostly overlap with the Golgi. Furthermore, LIN-10 recruits LIN-2, which in turn recruits LIN-7. We demonstrate that the complex forms in vivo with a particularly strong interaction and colocalization between LIN-2 and LIN-7, consistent with them forming a subcomplex. Thus, the LIN-2/7/10 complex forms on the Golgi on which it likely targets LET-23 EGFR trafficking to the basolateral membrane rather than functioning as a tether.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom