z-logo
open-access-imgOpen Access
Endogenous CRISPR/Cas9 arrays for scalable whole-organism lineage tracing
Author(s) -
James Cotterell,
Marta Vila-Cejudo,
Laura BatlleMorera,
James Sharpe
Publication year - 2020
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.184481
Subject(s) - biology , crispr , lineage (genetic) , computational biology , genome , genome editing , genetics , cas9 , gene
The past decade has seen a renewed appreciation of the central importance of cellular lineages to many questions in biology (especially organogenesis, stem cells and tumor biology). This has been driven in part by a renaissance in genetic clonal-labeling techniques. Recent approaches are based on accelerated mutation of DNA sequences, which can then be sequenced from individual cells to re-create a ‘phylogenetic’ tree of cell lineage. However, current approaches depend on making transgenic alterations to the genome in question, which limit their application. Here, we introduce a new method that completely avoids the need for prior genetic engineering, by identifying endogenous CRISPR/Cas9 target arrays suitable for lineage analysis. In both mouse and zebrafish, we identify the highest quality compact arrays as judged by equal base composition, 5′ G sequence, minimal likelihood of residing in the functional genome, minimal off targets and ease of amplification. We validate multiple high-quality endogenous CRISPR/Cas9 arrays, demonstrating their utility for lineage tracing. Our pragmatically scalable technique thus can produce deep and broad lineages in vivo, while removing the dependence on genetic engineering.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom