Fibroblast growth factor 10 is a negative regulator of postnatal neurogenesis in the mouse hypothalamus
Author(s) -
Timothy Goodman,
Stuart G. Nayar,
Shaun J. Clare,
Marta Mikolajczak,
Ritva Rice,
Suzanne L. Mansour,
Savério Bellusci,
Mohammad K. Hajihosseini
Publication year - 2020
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.180950
Subject(s) - biology , neurogenesis , neural stem cell , progenitor cell , microbiology and biotechnology , stem cell , population , medicine , hypothalamus , fibroblast growth factor , endocrinology , neuroscience , genetics , demography , receptor , sociology
New neurons are generated in the postnatal rodent hypothalamus, with a subset of tanycytes in the third ventricular (3V) wall serving as neural stem/progenitor cells. However, the precise stem cell niche organization, the intermediate steps and the endogenous regulators of postnatal hypothalamic neurogenesis remain elusive. Quantitative lineage-tracing in vivo revealed that conditional deletion of fibroblast growth factor 10 (Fgf10) from Fgf10-expressing β-tanycytes at postnatal days (P)4-5 results in the generation of significantly more parenchymal cells by P28, composed mostly of ventromedial and dorsomedial neurons and some glial cells, which persist into adulthood. A closer scrutiny in vivo and ex vivo revealed that the 3V wall is not static and is amenable to cell movements. Furthermore, normally β-tanycytes give rise to parenchymal cells via an intermediate population of α-tanycytes with transient amplifying cell characteristics. Loss of Fgf10 temporarily attenuates the amplification of β-tanycytes but also appears to delay the exit of their α-tanycyte descendants from the germinal 3V wall. Our findings suggest that transience of cells through the α-tanycyte domain is a key feature, and Fgf10 is a negative regulator of postnatal hypothalamic neurogenesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom