Understanding the extracellular forces that determine cell fate and maintenance
Author(s) -
Aditya Kumar,
Jesse K. Placone,
Adam J. Engler
Publication year - 2017
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.158469
Subject(s) - biology , mechanobiology , stem cell , stem cell niche , function (biology) , niche , perspective (graphical) , microbiology and biotechnology , neuroscience , cell fate determination , ecology , progenitor cell , transcription factor , genetics , computer science , artificial intelligence , gene
Stem cells interpret signals from their microenvironment while simultaneously modifying the niche through secreting factors and exerting mechanical forces. Many soluble stem cell cues have been determined over the past century, but in the past decade, our molecular understanding of mechanobiology has advanced to explain how passive and active forces induce similar signaling cascades that drive self-renewal, migration, differentiation or a combination of these outcomes. Improvements in stem cell culture methods, materials and biophysical tools that assess function have improved our understanding of these cascades. Here, we summarize these advances and offer perspective on ongoing challenges.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom