The apical ECM preserves embryonic integrity and distributes mechanical stress during morphogenesis
Author(s) -
Thanh Vuong-Brender,
Shashi Kumar Suman,
Michel Labouesse
Publication year - 2017
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.150383
Subject(s) - biology , microbiology and biotechnology , morphogenesis , caenorhabditis elegans , epidermis (zoology) , embryonic stem cell , anatomy , extracellular matrix , embryogenesis , embryo , biochemistry , gene
Epithelia are bound by both basal and apical extracellular matrices (ECM). Although the composition and function of the former have been intensively investigated, less is known about the latter. The embryonic sheath, the ECM apical to the Caenorhabditis elegans embryonic epidermis, has been suggested to promote elongation of the embryo. In an RNAi screen for the components of the sheath, we identified the zona pellucida domain proteins NOAH-1 and NOAH-2. We found that these proteins act in the same pathway, and in parallel to three other putative sheath proteins, the leucine-rich repeat proteins SYM-1, LET-4 and FBN-1/Fibrillin, to ensure embryonic integrity and promote elongation. Laser nano-ablation experiments to map the stress field show that NOAH-1 and NOAH-2, together with PAK-1/p21-activated kinase, maintain and relay the actomyosin-dependent stress generated within the lateral epidermis before muscles become active. Subsequently, loss-of-function experiments show that apical ECM proteins are essential for muscle anchoring and for relaying the mechanical input from muscle contractions, which are essential for elongation. Hence, the apical ECM contributes to morphogenesis by maintaining embryonic integrity and relaying mechanical stress.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom