
A stepwise model of Reaction-Diffusion and Positional-Information governs self-organized human peri-gastrulation-like patterning
Author(s) -
Mukul Tewary,
Joel Östblom,
Laura Prochazka,
Teresa Zulueta-Coarasa,
Nika Shakiba,
Rodrigo FernándezGonzález,
Peter W. Zandstra
Publication year - 2017
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.149658
Subject(s) - gastrulation , biology , fate mapping , microbiology and biotechnology , embryo , cell fate determination , developmental biology , embryonic stem cell , embryogenesis , anatomy , genetics , stem cell , gene , transcription factor , progenitor cell
How position-dependent cell fate acquisition occurs during embryogenesis is a central question in developmental biology. To study this process, we developed a defined, high-throughput assay to induce peri-gastrulation-associated patterning in geometrically confined human pluripotent stem cell (hPSC) colonies. We observed that, upon BMP4 treatment, phosphorylated SMAD1 (pSMAD1) activity in the colonies organized into a radial gradient. We developed a reaction-diffusion (RD)-based computational model and observed that the self-organization of pSMAD1 signaling was consistent with the RD principle. Consequent fate acquisition occurred as a function of both pSMAD1 signaling strength and duration of induction, consistent with the positional-information (PI) paradigm. We propose that the self-organized peri-gastrulation-like fate patterning in BMP4-treated geometrically confined hPSC colonies arises via a stepwise model of RD followed by PI. This two-step model predicted experimental responses to perturbations of key parameters such as colony size and BMP4 dose. Furthermore, it also predicted experimental conditions that resulted in RD-like periodic patterning in large hPSC colonies, and rescued peri-gastrulation-like patterning in colony sizes previously thought to be reticent to this behavior.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom