z-logo
open-access-imgOpen Access
Eccentric position of the germinal vesicle and cortical flow during oocyte maturation specify the animal-vegetal axis of ascidian embryos
Author(s) -
Masumi Tokuhisa,
Miyuki Muto,
Hiroki Nishida
Publication year - 2017
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.146282
Subject(s) - germinal vesicle , biology , polarity in embryogenesis , oocyte , microbiology and biotechnology , anatomy , embryo , polar body , embryogenesis , human fertilization , cleavage (geology) , meiosis , gastrulation , genetics , paleontology , fracture (geology) , gene
The animal-vegetal (A-V) axis is already set in unfertilized eggs. It plays crucial roles in coordinating germ-layer formation. However, how the A-V axis is set has not been well studied. In ascidians, unfertilized eggs are already polarized along the axis in terms of cellular components. This polarization occurs during oocyte maturation. Oocytes within the gonad have the germinal vesicle (GV) close to the future animal pole. When the GVs of full-grown oocytes were experimentally translocated to the opposite pole by centrifugal force, every aspect that designates A-V polarity was reversed in the eggs and embryos. This was confirmed by examining the cortical allocation of the meiotic spindle, the position of the polar body emission, the polarized distribution of mitochondria and postplasmic/PEM mRNA, the direction of the cortical flow during oocyte maturation, the cleavage pattern and germ-layer formation during embryogenesis. Therefore, the eccentric position of the GV triggers subsequent polarizing events and establishes the A-V axis in eggs and embryos. We emphasize important roles of the cortical flow. This is the first report in which the A-V axis was experimentally and completely reversed in animal oocytes before fertilization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom