z-logo
open-access-imgOpen Access
Hox-mediated endodermal identity patterns the pharyngeal muscle formation in the chordate pharynx
Author(s) -
Keita Yoshida,
Azusa Nakahata,
Nicholas Treen,
Tetsushi Sakuma,
Takashi Yamamoto,
Yasunori Sasakura
Publication year - 2017
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.144436
Subject(s) - chordate , biology , endoderm , hox gene , anatomy , fate mapping , pharynx , genetics , vertebrate , gene , transcription factor , embryonic stem cell
The chordate pharynx, possessing gill slits and the endostyle, is a complex of multiple tissues that are highly organized along the anterior-posterior (AP) axis. Although Hox genes show AP coordinated expression in the pharyngeal endoderm, tissue-specific roles of these factors for establishing the regional identities within this tissue have not been demonstrated. Here, we show tha Hox1 is essential for the establishment of AP axial identity of the endostyle, a major structure of the pharyngeal endoderm, in the ascidian Ciona intestinalis We found that knockout of Hox1 causes posterior-to-anterior transformation of the endostyle identity, and tha Hox1 represses Otx expression and anterior identity, and vice versa. Furthermore, alteration of the regional identity of the endostyle disrupts the formation of body wall muscles, suggesting that the endodermal axial identity is essential for coordinated pharyngeal development. Our results demonstrate an essential role of Hox genes in establishment of the AP regional identity in the pharyngeal endoderm and reveal crosstalk between endoderm and mesoderm during development of chordate pharynx.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom