z-logo
open-access-imgOpen Access
FGF signaling enforces cardiac chamber identity in the developing ventricle
Author(s) -
Arjana Pradhan,
Xin-Xin I. Zeng,
Pragya Sidhwani,
Sara R. Marques,
Vanessa George,
Kimara L. Targoff,
C. Neil,
Deborah Yelon
Publication year - 2017
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.143719
Subject(s) - biology , ectopic expression , zebrafish , ventricle , fibroblast growth factor , microbiology and biotechnology , transcription factor , signal transduction , phenotype , medicine , gene , genetics , receptor
Atrial and ventricular cardiac chambers behave as distinct subunits with unique morphological, electrophysiological and contractile properties. Despite the importance of chamber-specific features, chamber fate assignments remain relatively plastic, even after differentiation is underway. In zebrafish, Nkx transcription factors are essential for the maintenance of ventricular characteristics, but the signaling pathways that operate upstream of Nkx factors in this context are not well understood. Here, we show that FGF signaling plays an essential part in enforcing ventricular identity. Loss of FGF signaling results in a gradual accumulation of atrial cells, a corresponding loss of ventricular cells, and the appearance of ectopic atrial gene expression within the ventricle. These phenotypes reflect important roles for FGF signaling in promoting ventricular traits, both in early-differentiating cells that form the initial ventricle and in late-differentiating cells that append to its arterial pole. Moreover, we find that FGF signaling functions upstream of Nkx genes to inhibit ectopic atrial gene expression. Together, our data suggest a model in which sustained FGF signaling acts to suppress cardiomyocyte plasticity and to preserve the integrity of the ventricular chamber.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom