The mammal-specific Pdx1 Area II enhancer has multiple essential functions in early endocrine-cell specification and postnatal β-cell maturation
Author(s) -
Yuping Yang,
Mark A. Magnuson,
Roland Stein,
Christopher V.E. Wright
Publication year - 2016
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.143123
Subject(s) - biology , pdx1 , progenitor cell , microbiology and biotechnology , stem cell , population , enteroendocrine cell , cellular differentiation , transcription factor , medicine , endocrinology , endocrine system , insulin , genetics , islet , hormone , gene , demography , sociology
The transcription factor Pdx1 is required for multiple aspects of pancreatic organogenesis. It remains unclear to what extent Pdx1 expression and function depend upon trans-activation through 5' conserved cis-regulatory regions and, in particular, whether the mammal-specific Area II (-2139 to -1958 bp) affects minor or major aspects of organogenesis. We show that Area II is a primary effector of endocrine-selective transcription in epithelial multipotent cells, nascent endocrine progenitors, and differentiating and mature β cells in vivo Pdx1 ΔAREAII/- mice exhibit a massive reduction in endocrine progenitor cells and progeny hormone-producing cells, indicating that Area II activity is fundamental to mounting an effective endocrine lineage-specification program within the multipotent cell population. Creating an Area II-deleted state within already specified Neurog3-expressing endocrine progenitor cells increased the proportion of glucagon + α relative to insulin + β cells, associated with the transcriptional and epigenetic derepression of the α-cell-determining Arx gene in endocrine progenitors. There were also glucagon and insulin co-expressing cells, and β cells that were incapable of maturation. Creating the Pdx1 ΔAREAII state after cells entered an insulin-expressing stage led to immature and dysfunctional islet β cells carrying abnormal chromatin marking in vital β-cell-associated genes. Therefore, trans-regulatory integration through Area II mediates a surprisingly extensive range of progenitor and β-cell-specific Pdx1 functions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom