Direct lineage reprogramming via pioneer factors; a detour through developmental gene regulatory networks
Author(s) -
Samantha A. Morris
Publication year - 2016
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.138263
Subject(s) - biology , reprogramming , chromatin , embryonic stem cell , gene regulatory network , developmental biology , cell fate determination , lineage (genetic) , limiting , cellular differentiation , reversion , genetics , transcription factor , gene , microbiology and biotechnology , evolutionary biology , computational biology , gene expression , phenotype , mechanical engineering , engineering
Although many approaches have been employed to generate defined fate in vitro, the resultant cells often appear developmentally immature or incompletely specified, limiting their utility. Growing evidence suggests that current methods of direct lineage conversion may rely on the transition through a developmental intermediate. Here, I hypothesize that complete conversion between cell fates is more probable and feasible via reversion to a developmentally immature state. I posit that this is due to the role of pioneer transcription factors in engaging silent, unmarked chromatin and activating hierarchical gene regulatory networks responsible for embryonic patterning. Understanding these developmental contexts will be essential for the precise engineering of cell identity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom