z-logo
open-access-imgOpen Access
Retinoid signaling controls spermatogonial differentiation by regulating expression of replication-dependent core histone genes
Author(s) -
Yao Chen,
Li Ma,
Cathryn A. Hogarth,
Gang Wei,
Michael D. Griswold,
Ming-Han Tong
Publication year - 2016
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.135939
Subject(s) - biology , histone , retinoid , retinoic acid , microbiology and biotechnology , cellular differentiation , signal transduction , retinoid x receptor beta , regulation of gene expression , nuclear receptor , retinoid x receptor alpha , gene , genetics , transcription factor
Retinoic acid (RA) signaling is crucial for spermatogonial differentiation, which is a key step for spermatogenesis. We explored the mechanisms underlying spermatogonial differentiation by targeting expression of a dominant-negative mutant of retinoic acid receptor α (RARα) specifically to the germ cells of transgenic mice to subvert the activity of endogenous receptors. Here we show that: (1) inhibition of retinoid signaling in germ cells completely blocked spermatogonial differentiation identical to vitamin A-deficient (VAD) mice; (2) the blockage of spermatogonial differentiation by impaired retinoid signaling resulted from an arrest of entry of the undifferentiated spermatogonia into S phase; and (3) retinoid signaling regulated spermatogonial differentiation through controlling expression of its direct target genes, including replication-dependent core histone genes. Taken together, our results demonstrate that the action of retinoid signaling on spermatogonial differentiation in vivo is direct through the spermatogonia itself, and provide the first evidence that this is mediated by regulation of expression of replication-dependent core histone genes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom