FGFR2 is required for airway basal cell self-renewal and terminal differentiation
Author(s) -
Gayan I. Balasooriya,
Maja Goschorska,
Eugenia Piddini,
Emma L. Rawlins
Publication year - 2017
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.135681
Subject(s) - biology , sox2 , cellular differentiation , phenotype , transcription factor , receptor tyrosine kinase , microbiology and biotechnology , stem cell , basal (medicine) , genetics , kinase , endocrinology , gene , insulin
Airway stem cells slowly self-renew and produce differentiated progeny to maintain homeostasis throughout the lifespan of an individual. Mutations in the molecular regulators of these processes may drive cancer or degenerative disease, but are also potential therapeutic targets. Conditionally deleting one copy of FGF receptor 2 (FGFR2) in adult mouse airway basal cells results in self-renewal and differentiation phenotypes. We show that FGFR2 signalling correlates with maintenance of expression of a key transcription factor for basal cell self-renewal and differentiation: SOX2. This heterozygous phenotype illustrates that subtle changes in receptor tyrosine kinase signalling can have significant effects, perhaps providing an explanation for the numerous changes seen in cancer.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom