z-logo
open-access-imgOpen Access
Activation of Smad2 but not Smad3 is required to mediate TGF-β signaling during axolotl limb regeneration
Author(s) -
Jean-François Denis,
Fadi Sader,
Samuel Gatien,
Éric Villiard,
Anie Philip,
Stéphane Roy
Publication year - 2016
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.131466
Subject(s) - axolotl , biology , regeneration (biology) , microbiology and biotechnology , transforming growth factor , signal transduction
Axolotls are unique among vertebrates in their ability to regenerate tissues, such as limbs, tail and skin. The axolotl limb is the most studied regenerating structure. The process is well characterized morphologically; however, it is not well understood at the molecular level. We demonstrate that TGF-β1 is highly upregulated during regeneration and that TGF-β signaling is necessary for the regenerative process. We show that the basement membrane is not prematurely formed in animals treated with the TGF-β antagonist SB-431542. More importantly, Smad2 and Smad3 are differentially regulated post-translationally during the preparation phase of limb regeneration. Using specific antagonists for Smad2 and Smad3 we demonstrate that Smad2 is responsible for the action of TGF-β during regeneration, whereas Smad3 is not required. Smad2 target genes (Mmp2 and Mmp9) are inhibited in SB-431542-treated limbs, whereas non-canonical TGF-β targets (e.g. Mmp13) are unaffected. This is the first study to show that Smad2 and Smad3 are differentially regulated during regeneration and places Smad2 at the heart of TGF-β signaling supporting the regenerative process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom