z-logo
open-access-imgOpen Access
A gradient of maternal Bicaudal-C controls vertebrate embryogenesis via translational repression of mRNAs encoding cell fate regulators
Author(s) -
S. Park,
Susan Blaser,
M. A. Marchal,
D. W. Houston,
Michael Sheets
Publication year - 2016
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.131359
Subject(s) - biology , xenopus , microbiology and biotechnology , psychological repression , gene knockdown , wnt signaling pathway , cell fate determination , embryogenesis , translation (biology) , messenger rna , embryo , gene expression , signal transduction , gene , genetics , transcription factor
Vertebrate Bicaudal-C (Bicc1) has important biological roles in the formation and homeostasis of multiple organs, but direct experiments to address the role of maternal Bicc1 in early vertebrate embryogenesis have not been reported. Here, we use antisense phosphorothioate-modified oligonucleotides and the host-transfer technique to eliminate specifically maternal stores of both bicc1 mRNA and Bicc1 protein from Xenopus laevis eggs. Fertilization of these Bicc1-depleted eggs produced embryos with an excess of dorsal-anterior structures and overexpressed organizer-specific genes, indicating that maternal Bicc1 is crucial for normal embryonic patterning of the vertebrate embryo. Bicc1 is an RNA-binding protein with robust translational repression function. Here, we show that the maternal mRNA encoding the cell-fate regulatory protein Wnt11b is a direct target of Bicc1-mediated repression. It is well established that the Wnt signaling pathway is crucial to vertebrate embryogenesis. Thus, the work presented here links the molecular function of Bicc1 in mRNA target-specific translation repression to its biological role in the maternally controlled stages of vertebrate embryogenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom