Regional signals in the planarian body guide stem cell fate in the presence of DNA instability
Author(s) -
T. Harshani Peiris,
Daniel Ramirez,
Paul G. Barghouth,
Udokanma Ofoha,
Devon Davidian,
Frank Weckerle,
Néstor J. Oviedo
Publication year - 2016
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.131318
Subject(s) - biology , microbiology and biotechnology , planarian , stem cell , rad51 , fate mapping , dna damage , homologous recombination , cell fate determination , dna , genetics , regeneration (biology) , gene , progenitor cell , transcription factor
Cellular fate decisions are influenced by their topographical location in the adult body. For instance, tissue repair and neoplastic growth are greater in anterior than in posterior regions of adult animals. However, the molecular underpinnings of these regional differences are unknown. We identified a regional switch in the adult planarian body upon systemic disruption of homologous recombination with RNA-interference of Rad51 Rad51 knockdown increases DNA double-strand breaks (DSBs) throughout the body, but stem cells react differently depending on their location along the anteroposterior axis. In the presence of extensive DSBs, cells in the anterior part of the body resist death, whereas cells in the posterior region undergo apoptosis. Furthermore, we found that proliferation of cells with DNA damage is induced in the presence of brain tissue and that the retinoblastoma pathway enables overproliferation of cells with DSBs while attending to the demands of tissue growth and repair. Our results implicate both autonomous and non-autonomous mechanisms as key mediators of regional cell behavior and cellular transformation in the adult body.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom