Adaptive protein divergence of BMP ligands takes place under developmental and evolutionary constraints
Author(s) -
Petra Tauscher,
Jinghua Gui,
Osamu Shimmi
Publication year - 2016
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.130427
Subject(s) - biology , divergence (linguistics) , evolutionary biology , adaptive evolution , computational biology , genetics , gene , philosophy , linguistics
The bone morphogenetic protein (BMP) signaling network, comprising evolutionary conserved BMP2/4/Decapentaplegic (Dpp) and Chordin/Short gastrulation (Sog), is widely utilized for dorsal-ventral (DV) patterning during animal development. A similar network is required for posterior crossvein (PCV) formation in the Drosophila pupal wing. Although both transcriptional and post-transcriptional regulation of co-factors in the network gives rise to tissue-specific and species-specific properties, their mechanisms are incompletely understood. In Drosophila, BMP5/6/7/8-type ligands, Screw (Scw) and Glass bottom boat (Gbb), form heterodimers with Dpp for DV patterning and PCV development, respectively. Sequence analysis indicates that the Scw ligand contains two N-glycosylation motifs: one being highly conserved between BMP2/4- and BMP5/6/7/8-type ligands, and the other being Scw ligand specific. Our data reveal that N-glycosylation of the Scw ligand boosts BMP signaling both in cell culture and in the embryo. In contrast, N-glycosylation modifications of Gbb or Scw ligands reduce the consistency of PCV development. These results suggest that tolerance for structural changes of BMP5/6/7/8-type ligands is dependent on developmental constraints. Furthermore, gain and loss of N-glycosylation motifs in conserved signaling molecules under evolutionary constraints appear to constitute flexible modules to adapt to developmental processes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom