z-logo
open-access-imgOpen Access
Disruption of mesodermal enhancers forIgf2in the minute mutant
Author(s) -
Karen Davies,
Lucy Bowden,
Paul D. Smith,
Wendy Dean,
David J. Hill,
Hiroyasu Furuumi,
Hiroyuki Sasaki,
B.M. Cattanach,
Wolf Reik
Publication year - 2002
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.129.7.1657
Subject(s) - biology , genomic imprinting , enhancer , dna methylation , genetics , methylation , gene silencing , mutant , gene , microbiology and biotechnology , gene expression
The radiation-induced mutation minute (Mnt) in the mouse leads to intrauterine growth retardation with paternal transmission and has been linked to the distal chromosome 7 cluster of imprinted genes. We show that the mutation is an inversion, whose breakpoint distal to H19 disrupts and thus identifies an enhancer for Igf2 expression in skeletal muscle and tongue, and separates the gene from other mesodermal and extra-embryonic enhancers. Paternal transmission of Mnt leads to drastic downregulation of Igf2 transcripts in all mesodermal tissues and the placenta. Maternal transmission leads to methylation of the H19 differentially methylated region (DMR) and silencing of H19, showing that elements 3′ of H19 can modify the maternal imprint. Methylation of the maternal DMR leads to biallelic expression of Igf2 in endodermal tissues and foetal overgrowth, demonstrating that methylation in vivo can open the chromatin boundary upstream of H19. Our work shows that most known enhancers for Igf2 are located 3′ of H19 and establishes an important genetic paradigm for the inheritance of complex regulatory mutations in imprinted gene clusters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom