Molecular integration ofcasanovain the Nodal signalling pathway controlling endoderm formation
Author(s) -
Tazu O. Aoki,
Nicolas B. David,
Gabriella Minchiotti,
Laure Saint-Etienne,
Thomas Dickmeis,
Graziella Persico,
Uwe Strähle,
Philippe Mourrain,
Frédéric Rosa
Publication year - 2002
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.129.2.275
Subject(s) - endoderm , nodal , mesoderm , biology , gastrulation , nodal signaling , microbiology and biotechnology , fgf and mesoderm formation , histogenesis , germ layer , genetics , embryo , embryogenesis , cellular differentiation , embryonic stem cell , gene , immunology , immunohistochemistry , induced pluripotent stem cell
Endoderm originates from a large endomesodermal field requiring Nodal signalling. The mechanisms that ensure segregation of endoderm from mesoderm are not fully understood. We first show that the timing and dose of Nodal activation are crucial for endoderm formation and the endoderm versus mesoderm fate choice, because sustained Nodal signalling is required to ensure endoderm formation but transient signalling is sufficient for mesoderm formation. In zebrafish, downstream of Nodal signals, three genes encoding transcription factors (faust, bonnie and clyde and the recently identified gene casanova) are required for endoderm formation and differentiation. However their positions within the pathway are not completely established. In the present work, we show that casanova is the earliest specification marker for endodermal cells and that its expression requires bonnie and clyde. Furthermore, we have analysed the molecular activities of casanova on endoderm formation and found that it can induce endodermal markers and repress mesodermal markers during gastrulation, as well as change the fate of marginal blastomeres to endoderm. Overexpression of casanova also restores endoderm markers in the absence of Nodal signalling. In addition, casanova efficiently restores later endodermal differentiation in these mutants, but this process requires, in addition, a partial activation of Nodal signalling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom