z-logo
open-access-imgOpen Access
Pbx1 is required for adult SVZ neurogenesis
Author(s) -
Britta M. Grebbin,
AnnChristin Hau,
Anja Groß,
Marie Anders-Maurer,
Jasmine Schramm,
Matthew Koss,
Christoph Wille,
Michel Mittelbronn,
Licia Selleri,
Dorothea Schulte
Publication year - 2016
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.128033
Subject(s) - biology , neurogenesis , neuroscience
TALE-homeodomain proteins function as components of heteromeric complexes that contain one member each of the PBC and MEIS/PREP subclasses. We recently showed that MEIS2 cooperates with the neurogenic transcription factor PAX6 in the control of adult subventricular zone (SVZ) neurogenesis in rodents. Expression of the PBC protein PBX1 in the SVZ has been reported, but its functional role(s) has not been investigated. Using a genetic loss-of-function mouse model, we now show that Pbx1 is an early regulator of SVZ neurogenesis. Targeted deletion of Pbx1 by retroviral transduction of Cre recombinase into Pbx2-deficient SVZ stem and progenitor cells carrying floxed alleles of Pbx1 significantly reduced the production of neurons and increased the generation of oligodendrocytes. Loss of Pbx1 expression in neuronally committed neuroblasts in the rostral migratory stream in a Pbx2 null background, by contrast, severely compromised cell survival. By chromatin immunoprecipitation from endogenous tissues or isolated cells, we further detected PBX1 binding to known regulatory regions of the neuron-specific genes Dcx and Th days or even weeks before the respective genes are expressed during the normal program of SVZ neurogenesis, suggesting that PBX1 might act as a priming factor to mark these genes for subsequent activation. Collectively, our results establish that PBX1 regulates adult neural cell fate determination in a manner beyond that of its heterodimerization partner MEIS2.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom