z-logo
open-access-imgOpen Access
Armadillo nuclear import is regulated by cytoplasmic anchor Axin and nuclear anchor dTCF/Pan
Author(s) -
Nicholas S. Tolwinski,
Eric Wieschaus
Publication year - 2001
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.128.11.2107
Subject(s) - biology , armadillo , microbiology and biotechnology , transcription factor , nuclear protein , nuclear localization sequence , cytoplasm , cell nucleus , nuclear export signal , nuclear transport , genetics , gene
Drosophila melanogaster Armadillo plays two distinct roles during development. It is a component of adherens junctions, and functions as a transcriptional activator in response to Wingless signaling. In the current model, Wingless signal causes stabilization of cytoplasmic Armadillo allowing it to enter the nucleus where it can activate transcription. However, the mechanism of nuclear import and export remains to be elucidated. In this study, we show that two gain-of-function alleles of Armadillo activate Wingless signaling by different mechanisms. The S10 allele was previously found to localize to the nucleus, where it activates transcription. In contrast, the Delta Arm allele localizes to the plasma membrane, and forces endogenous Arm into the nucleus. Therefore, Delta Arm is dependent on the presence of a functional endogenous allele of arm to activate transcription. We show that Delta Arm may function by titrating Axin protein to the membrane, suggesting that it acts as a cytoplasmic anchor keeping Arm out of the nucleus. In axin mutants, Arm is localized to the nuclei. We find that nuclear retention is dependent on dTCF/Pangolin. This suggests that cellular distribution of Arm is controlled by an anchoring system, where various nuclear and cytoplasmic binding partners determine its localization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom