z-logo
open-access-imgOpen Access
Sperm-induced calcium oscillations at fertilisation in ascidians are controlled by cyclin B1-dependent kinase activity
Author(s) -
Mark Levasseur,
Alex McDougall
Publication year - 2000
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.127.3.631
Subject(s) - biology , cyclin dependent kinase , microbiology and biotechnology , maturation promoting factor , cyclin b1 , calcium , sperm , cyclin b , cell cycle , cyclin , cyclin dependent kinase 1 , biochemistry , medicine , cell , botany
The generation of calcium oscillations at fertilisation and during mitosis appears to be controlled by the cell cycle machinery. For example, the calcium oscillations in oocytes and embryos occur during metaphase and terminate upon entry into interphase. Here we report the manipulation of sperm-triggered calcium oscillations by cyclin-dependent kinase (CDK) activity, the major component of maturation/M phase promoting factor (MPF). To control the CDK activity we microinjected mRNAs encoding full-length GFP-tagged cyclin B1 or a truncated and therefore stabilised form of cyclin B1 ((delta)90) into unfertilised oocytes. In the presence of full-length cyclin B1, the calcium oscillations terminate when cyclin B1 levels fall along with the concomitant fall in the associated CDK activity. In addition, when the CDK activity is elevated indefinitely with (delta)90 cyclin B1, the calcium oscillations also continue indefinitely. Finally, in oocytes that contain low mitogen-activated protein (MAP) kinase activity and elevated CDK activity, the sperm-triggered calcium oscillations are again prolonged. We conclude that the CDK activity of the ascidian oocyte can be regarded as a positive regulator of sperm-triggered calcium oscillations, a finding that may apply to other oocytes that display sperm-triggered calcium oscillations at fertilisation. Furthermore, these findings may have a bearing upon the mitotic calcium signals of early embryos.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom