z-logo
open-access-imgOpen Access
Positional cues specify and maintain aleurone cell fate in maize endosperm development
Author(s) -
Philip W. Becraft,
Yvonne Asuncion-Crabb
Publication year - 2000
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.127.18.4039
Subject(s) - aleurone , endosperm , biology , microbiology and biotechnology , cellular differentiation , cell fate determination , genetics , mutant , gene , transcription factor
A genetic analysis of maize aleurone development was conducted. Cell lineage was examined by simultaneously marking cells with C1 for anthocyanin pigmentation in the aleurone and wx1 for amylose synthesis in the starchy endosperm. The aleurone and starchy endosperm share a common lineage throughout development indicating that positional cues specify aleurone fate. Mutants in dek1 block aleurone formation at an early stage and cause peripheral endosperm cells to develop as starchy endosperm. Revertant sectors of a transposon-induced dek1 allele showed that peripheral endosperm cells remain competent to differentiate as aleurone cells until late in development. Ds-induced chromosome breakage was used to generate Dek1 loss-of-function sectors. Events occurring until late development caused aleurone cells to switch fate to starchy endosperm indicating that cell fate is not fixed. Thus, positional cues are required to specify and maintain aleurone fate and Dek1 function is required to respond to these cues. An analysis of additional mutants that disrupt aleurone differentiation suggests a hierarchy of gene functions to specify aleurone cell fate and then control aleurone differentiation. These mutants disrupt aleurone differentiation in reproducible patterns suggesting a relationship to endosperm pattern formation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom