Genetic analysis of Eclosion hormone action during Drosophila larval ecdysis
Author(s) -
Eileen Krüger,
Wilson Mena,
Eleanor C. Lahr,
Erik C. Johnson,
John Ewer
Publication year - 2015
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.126995
Subject(s) - biology , ecdysis , larva , drosophila (subgenus) , action (physics) , hormone , drosophila melanogaster , metamorphosis , endocrinology , evolutionary biology , zoology , medicine , genetics , gene , moulting , ecology , physics , quantum mechanics
Insect growth is punctuated by molts, during which the animal produces a new exoskeleton. The molt culminates in ecdysis, an ordered sequence of behaviors that causes the old cuticle to be shed. This sequence is activated by Ecdysis triggering hormone (ETH), which acts on the CNS to activate neurons that produce neuropeptides implicated in ecdysis, including Eclosion hormone (EH), Crustacean cardioactive peptide (CCAP) and Bursicon. Despite more than 40 years of research on ecdysis, our understanding of the precise roles of these neurohormones remains rudimentary. Of particular interest is EH; although it is known to upregulate ETH release, other roles for EH have remained elusive. We isolated an Eh null mutant in Drosophila and used it to investigate the role of EH in larval ecdysis. We found that null mutant animals invariably died at around the time of ecdysis, revealing an essential role in its control. Further analyses showed that these animals failed to express the preparatory behavior of pre-ecdysis while directly expressing the motor program of ecdysis. Although ETH release could not be detected, the lack of pre-ecdysis could not be rescued by injections of ETH, suggesting that EH is required within the CNS for ETH to trigger the normal ecdysial sequence. Using a genetically encoded calcium probe, we showed that EH configured the response of the CNS to ETH. These findings show that EH plays an essential role in the Drosophila CNS in the control of ecdysis, in addition to its known role in the periphery of triggering ETH release.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom