Spatial response to fibroblast growth factor signalling inXenopusembryos
Author(s) -
Bea Christen,
Jonathan Slack
Publication year - 1999
Publication title -
development
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.126.1.119
Subject(s) - biology , mapk/erk pathway , xenopus , microbiology and biotechnology , fibroblast growth factor , receptor , signal transduction , biochemistry , gene
We have examined the spatial pattern of activation of the extracellular signal-regulated protein kinase (ERK) during Xenopus development, and show that it closely resembles the expression of various fibroblast growth factors (FGFs). Until the tailbud stage of development, all ERK activation domains are sensitive to the dominant negative FGF receptor, showing that activation is generated by endogenous FGF signalling. ERK is not activated by application of other growth factors like BMP4 or activin, nor is endogenous activation blocked by the respective dominant negative receptors. This shows that various domains of FGF expression, including the periblastoporal region and the midbrain-hindbrain boundary, are also sites of FGF signalling in vivo. Wounding induces a transient (<60 minutes) activation of ERK which is not significantly reduced by the dominant negative FGF receptor. An artificial FGF source, created by injection of eFGF mRNA into cleavage stage embryos, provokes ERK activation outside of its injection site over a range of several cell diameters. The range and extent of ERK activation outside the source region is unchanged by co-injection of a dominant negative form of Ras, which blocks ERK-activation within the source. This suggests that FGF protein can diffuse over several cell diameters.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom