Asymmetric cell convergence-driven fin bud initiation and pre-pattern requires Tbx5a control of a mesenchymal Fgf signal
Author(s) -
Qiyan Mao,
Haley K. Stinnett,
Robert K. Ho
Publication year - 2015
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.124750
Subject(s) - biology , forelimb , mesoderm , zebrafish , fish fin , fate mapping , cell fate determination , anatomy , microbiology and biotechnology , fin , motility , vertebrate , genetics , stem cell , embryonic stem cell , gene , progenitor cell , materials science , fishery , fish <actinopterygii> , transcription factor , composite material
Tbx5 plays a pivotal role in vertebrate forelimb initiation, and loss-of-function experiments result in deformed or absent forelimbs in all taxa studied to date. Combining single-cell fate mapping and three-dimensional cell tracking in the zebrafish, we describe a Tbx5a-dependent cell convergence pattern that is both asymmetric and topological within the fin-field lateral plate mesoderm during early fin bud initiation. We further demonstrate that a mesodermal Fgf24 convergence cue controlled by Tbx5a underlies this asymmetric convergent motility. Partial reduction in Tbx5a or Fgf24 levels disrupts the normal fin-field cell motility gradient and results in anteriorly biased perturbations of fin-field cell convergence and truncations in the pectoral fin skeleton, resembling aspects of the forelimb skeletal defects that define individuals with Holt-Oram syndrome. This study provides a quantitative reference model for fin-field cell motility during vertebrate fin bud initiation and suggests that a pre-pattern of anteroposterior fate specification is already present in the fin-field before or during migration because perturbations to these early cell movements result in the alteration of specific fates.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom