Expression of constitutively active Notch arrests follicle cells at a precursor stage during Drosophila oogenesis and disrupts the anterior-posterior axis of the oocyte
Author(s) -
Michele Keller Larkin,
Kristin Holder,
Cynthia Yost,
Edward Giniger,
Hannele RuoholaBaker
Publication year - 1996
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.122.11.3639
Subject(s) - biology , notch signaling pathway , microbiology and biotechnology , oocyte , follicle , precursor cell , oogenesis , progenitor cell , phenotype , cell fate determination , cell , genetics , gene , stem cell , endocrinology , embryo , signal transduction , transcription factor
During early development, there are numerous instances where a bipotent progenitor divides to give rise to two progeny cells with different fates. The Notch gene of Drosophila and its homologues in other metazoans have been implicated in many of these cell fate decisions. It has been argued that the role of Notch in such instances may be to maintain cells in a precursor state susceptible to specific differentiating signals. This has been difficult to prove, however, due to a lack of definitive markers for precursor identity. We here perform molecular and morphological analyses of the roles of Notch in ovarian follicle cells during Drosophila oogenesis. These studies show directly that constitutively active Notch arrests cells at a precursor stage, while the loss of Notch function eliminates this stage. Expression of moderate levels of activated Notch leads to partial transformation of cell fates, as found in other systems, and we show that this milder phenotype correlates with a prolonged, but still transient, precursor stage. We also find that expression of constitutively active Notch in follicle cells at later stages leads to a defect in the anterior-posterior axis of the oocyte.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom