z-logo
open-access-imgOpen Access
Differential regulation of AP-1 and novel TRE-specific DNA-binding complexes during differentiation of oligodendrocyte-type-2-astrocyte (O-2A) progenitor cells
Author(s) -
Susan C. Barnett,
Marta Rosário,
Arthur Conan Doyle,
Anna Kilbey,
Archie Lovatt,
David A. Gillespie
Publication year - 1995
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.121.12.3969
Subject(s) - biology , progenitor cell , astrocyte , microbiology and biotechnology , cellular differentiation , transcription factor , oligodendrocyte , cell culture , glial fibrillary acidic protein , dna binding protein , electrophoretic mobility shift assay , gene , stem cell , genetics , immunology , myelin , immunohistochemistry , neuroscience , central nervous system
AP-1 is an ubiquitous transcription factor which is composed of the Jun and Fos proto-oncogene proteins and is thought to play a role in both cell proliferation and differentiation. We have used an immortal, bipotential oligodendrocyte-type-2 astrocyte progenitor cell line (O-2A/c-myc) which can differentiate into oligodendrocytes or type-2 astrocytes in vitro, to investigate whether AP-1 DNA-binding activity fluctuates during glial cell differentiation. Unexpectedly, DNA-mobility shift assays using a TRE-containing oligonucleotide derived from the promoter of the glial-specific gene, glial fibrillary acidic protein (GFAP/AP-1), revealed that O-2A/c-myc progenitor cells were devoid of conventional AP-1 DNA-binding complexes. O-2A/c-myc cells did however contain several novel GFAP/AP-1-specific DNA-binding complexes, which we have termed APprog. APprog complexes recognise the TRE consensus motif present in the GFAP/AP-1 oligonucleotide together with adjacent 3' sequences but do not contain c-Jun or any other known Jun-related proteins. When O-2A/c-myc cells underwent terminal differentiation APprog complexes were lost and conventional AP-1 DNA-binding activity became evident, particularly in astrocytes. These changes appear to be closely linked to the differentiation process since they did not occur in a derivative of the O-2A/c-myc cell line that contains an activated v-ras oncogene and which fails to differentiate under appropriate culture conditions. The inverse regulation of conventional AP-1 and APprog complexes within the O-2A lineage suggests that these factors may play a role in the regulation of glial cell differentiation or glial cell-specific gene expression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom