z-logo
open-access-imgOpen Access
Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases
Author(s) -
Zachary L. Nimchuk,
Yun Zhou,
Paul T. Tarr,
Brenda A. Peterson,
Elliot M. Meyerowitz
Publication year - 2015
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.119677
Subject(s) - biology , meristem , arabidopsis , microbiology and biotechnology , mutant , redundancy (engineering) , genetics , computational biology , gene , computer science , operating system
The CLAVATA3 (CLV3)-CLAVATA1 (CLV1) ligand-receptor kinase pair negatively regulates shoot stem cell proliferation in plants. clv1 null mutants are weaker in phenotype than clv3 mutants, but the clv1 null phenotype is enhanced by mutations in the related receptor kinases BARELY ANY MERISTEM 1, 2 and 3 (BAM1, 2 and 3). The basis of this genetic redundancy is unknown. Here, we demonstrate that the apparent redundancy in the CLV1 clade is in fact due to the transcriptional repression of BAM genes by CLV1 signaling. CLV1 signaling in the rib meristem (RM) of the shoot apical meristem is necessary and sufficient for stem cell regulation. CLV3-CLV1 signaling in the RM represses BAM expression in wild-type Arabidopsis plants. In clv1 mutants, ectopic BAM expression in the RM partially complements the loss of CLV1. BAM regulation by CLV1 is distinct from CLV1 regulation of WUSCHEL, a proposed CLV1 target gene. In addition, quadruple receptor mutants are stronger in phenotype than clv3, pointing to the existence of additional CLV1/BAM ligands. These data provide an explanation for the genetic redundancy seen in the CLV1 clade and reveal a novel feedback operating in the control of plant stem cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom