z-logo
open-access-imgOpen Access
Sensory hair cell development and regeneration: similarities and differences
Author(s) -
Patrick J. Atkinson,
Elvis Huarcaya Najarro,
Zahra N. Sayyid,
Alan G. Cheng
Publication year - 2015
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.114926
Subject(s) - biology , hair cell , zebrafish , regeneration (biology) , cochlea , vestibular system , inner ear , sensory system , morphogen , neuroscience , microbiology and biotechnology , lateral line , anatomy , genetics , gene
Sensory hair cells are mechanoreceptors of the auditory and vestibular systems and are crucial for hearing and balance. In adult mammals, auditory hair cells are unable to regenerate, and damage to these cells results in permanent hearing loss. By contrast, hair cells in the chick cochlea and the zebrafish lateral line are able to regenerate, prompting studies into the signaling pathways, morphogen gradients and transcription factors that regulate hair cell development and regeneration in various species. Here, we review these findings and discuss how various signaling pathways and factors function to modulate sensory hair cell development and regeneration. By comparing and contrasting development and regeneration, we also highlight the utility and limitations of using defined developmental cues to drive mammalian hair cell regeneration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom