z-logo
open-access-imgOpen Access
Thyroid hormone receptors in chick retinal development: differential expression of mRNAs for α and N-terminal variant β receptors
Author(s) -
Maria Sjöberg,
Björn Vennström,
Douglas Forrest
Publication year - 1992
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.114.1.39
Subject(s) - biology , inner nuclear layer , ganglion cell layer , thyroid hormone receptor , receptor , outer nuclear layer , microbiology and biotechnology , retinal , nuclear receptor , gene expression , endocrinology , medicine , thyroid , transcription factor , gene , genetics , biochemistry
Thyroid-hormone-dependent development of the neuroretina has principally been described in amphibia. Here, we show by in situ hybridisation that mRNAs coding for three distinct thyroid hormone receptors (TRs), TR alpha and two TR beta variants, are differentially expressed during chick retinal development. We isolated a cDNA for a novel N-terminal variant of chick TR beta (cTR beta 2) that is predominantly expressed in retinal development. Interestingly, in its N-terminal A/B domain cTR beta 2 is 70% homologous to the rat pituitary-specific TR beta 2. Expression of cTR beta 2 mRNA was high at embryonic day 6 (E6) in the retinal outer nuclear layer (ONL) and decreased to low levels at hatching. mRNA for the previously described chick beta receptor, cTR beta 0, was expressed at low levels in both the ONL and the inner nuclear layer (INL) after E10. In contrast, cTR alpha expression occurred in the ONL, INL and ganglion cell layer at intermediate and later stages. Finally, cTR beta 2 confers a stronger trans-activation of reporter gene transcription than cTR beta 0. The distinctive kinetics and localisation of TR alpha and beta gene expression suggest cell- and stage-specific functions for TRs, both individually and in combinations, in chick neuroretinal development.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom