Positional cues governing cell migration in leech neurogenesis
Author(s) -
Steven A. Torrence
Publication year - 1991
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.111.4.993
Subject(s) - biology , leech , embryonic stem cell , neurogenesis , microbiology and biotechnology , cell migration , nervous system , neuroscience , cell , neural cell , embryo , anatomy , genetics , world wide web , computer science , gene
The stereotyped distribution of identified neurons and glial cells in the leech nervous system is the product of stereotyped cell migrations and rearrangements during embryogenesis. To examine the dependence of long-distance cell migrations on positional cues provided by other tissues, embryos of Theromyzon rude were examined for the effects of selective ablation of various embryonic cell lines on the migration and final distribution of neural and glial precursor cells descended from the bilaterally paired ectodermal cell lines designated q bandlets. The results suggest that neither the commitment of q-bandlet cells to migrate nor the general lateral-to-medial direction of their migration depend on interactions with any other cell line. However, the ability of the migrating cells to follow their normal pathways and to find their normal destinations does depend on interactions with cells of the mesodermal cell line, which appears to provide positional cues that specify the migration pathways.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom