z-logo
open-access-imgOpen Access
NRP1-mediated Sema3A signals coordinate laminar formation in the developing chick optic tectum
Author(s) -
Yuji Watanabe,
Chie Sakuma,
Hiroyuki Yaginuma
Publication year - 2014
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.110205
Subject(s) - neuropilin 1 , biology , sema3a , laminar flow , tectum , efferent , anatomy , neuroscience , microbiology and biotechnology , semaphorin , receptor , central nervous system , midbrain , afferent , biochemistry , physics , cancer research , vascular endothelial growth factor , vegf receptors , thermodynamics
The optic tectum comprises multiple layers, which are formed by radial and tangential migration during development. Here, we report that Neuropilin 1 (NRP1)-mediated Sema3A signals are involved in the process of tectal laminar formation, which is elaborated by tangential migration. In the developing chick tectum, NRP1, a receptor for Sema3A, is expressed in microtubule-associated protein 2 (MAP2)-positive intermediate layers IV and V. Sema3A itself is a diffusible guidance factor and is expressed in the overlying layer VI. Using stable fluorescent labeling of tectal cells, we show that MAP2-positive intermediate layers are formed by the neurons that have been dispersed by tangential migration along the tectal efferent axons. When Sema3A was mis-expressed during laminar formation, local Sema3A repelled the tangential migrants, thus eliminating MAP2-positive neurons that expressed NRP1. Furthermore, in the absence of the MAP2-positive neurons, tectal layers were disorganized into an undulated form, indicating that MAP2-positive intermediate layers are required for proper laminar formation. These results suggest that NRP1-mediated Sema3A signals provide repulsive signals for MAP2-positive neurons to segregate tectal layers, which is important in order to coordinate laminar organization of the optic tectum.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom