z-logo
open-access-imgOpen Access
The F-box protein Slmb restricts the activity of aPKC to polarize epithelial cells
Author(s) -
Lara C. Skwarek,
Sarah L. Windler,
Geert de Vreede,
Gregory C. Rogers,
David Bilder
Publication year - 2014
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.109694
Subject(s) - biology , microbiology and biotechnology , ubiquitin ligase , cell polarity , signal transducing adaptor protein , multiprotein complex , pdz domain , ubiquitin , epithelial polarity , scaffold protein , genetics , cell , signal transduction , gene
The Par-3/Par-6/aPKC complex is the primary determinant of apical polarity in epithelia across animal species, but how the activity of this complex is restricted to allow polarization of the basolateral domain is less well understood. In Drosophila, several multiprotein modules antagonize the Par complex through a variety of means. Here we identify a new mechanism involving regulated protein degradation. Strong mutations in supernumerary limbs (slmb), which encodes the substrate adaptor of an SCF-class E3 ubiquitin ligase, cause dramatic loss of polarity in imaginal discs accompanied by tumorous proliferation defects. Slmb function is required to restrain apical aPKC activity in a manner that is independent of endolysosomal trafficking and parallel to the Scribble module of junctional scaffolding proteins. The involvement of the Slmb E3 ligase in epithelial polarity, specifically limiting Par complex activity to distinguish the basolateral domain, points to parallels with polarization of the C. elegans zygote.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom