z-logo
open-access-imgOpen Access
Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament
Author(s) -
Yuki Sugimoto,
Aki Takimoto,
Haruhiko Akiyama,
Ralf Kist,
Gerd Scherer,
Takashi Nakamura,
Yuji Hiraki,
Chisa Shukunami
Publication year - 2013
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.096354
Subject(s) - biology , sox9 , cartilage , anatomy , ligament , microbiology and biotechnology , progenitor cell , tendon , stem cell , genetics , transcription factor , gene
SRY-box containing gene 9 (Sox9) and scleraxis (Scx) regulate cartilage and tendon formation, respectively. Here we report that murine Scx+/Sox9+ progenitors differentiate into chondrocytes and tenocytes/ligamentocytes to form the junction between cartilage and tendon/ligament. Sox9 lineage tracing in the Scx+ domain revealed that Scx+ progenitors can be subdivided into two distinct populations with regard to their Sox9 expression history: Scx+/Sox9+ and Scx+/Sox9− progenitors. Tenocytes are derived from Scx+/Sox9+ and Scx+/Sox9− progenitors. The closer the tendon is to the cartilaginous primordium, the more tenocytes arise from Scx+/Sox9+ progenitors. Ligamentocytes as well as the annulus fibrosus cells of the intervertebral discs are descendants of Scx+/Sox9+ progenitors. Conditional inactivation of Sox9 in Scx+/Sox9+ cells causes defective formation in the attachment sites of tendons/ligaments into the cartilage, and in the annulus fibrosus of the intervertebral discs. Thus, the Scx+/Sox9+ progenitor pool is a unique multipotent cell population that gives rise to tenocytes, ligamentocytes and chondrocytes for the establishment of the chondro-tendinous/ligamentous junction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom