Efficient site-specific transgenesis and enhancer activity tests in medaka using PhiC31 integrase
Author(s) -
Stephan Kirchmaier,
Burkhard Höckendorf,
Eva Katharina Möller,
Dorothee Bornhorst,
François Spitz,
Joachim Wittbrodt
Publication year - 2013
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.096081
Subject(s) - transgenesis , biology , enhancer , transgene , computational biology , germline , genetics , integrase , oryzias , gene , gene expression , reproductive biology , embryogenesis
Established transgenesis methods for fish model systems allow efficient genomic integration of transgenes. However, thus far a way of controlling copy number and integration sites has not been available, leading to variable transgene expression caused by position effects. The integration of transgenes at predefined genomic positions enables the direct comparison of different transgenes, thereby improving time and cost efficiency. Here, we report an efficient PhiC31-based site-specific transgenesis system for medaka. This system includes features that allow the pre-selection of successfully targeted integrations early on in the injected generation. Pre-selected embryos transmit the correctly integrated transgene through the germline with high efficiency. The landing site design enables a variety of applications, such as reporter and enhancer switch, in addition to the integration of any insert. Importantly, this allows assaying of enhancer activity in a site-specific manner without requiring germline transmission, thus speeding up large-scale analyses of regulatory elements.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom