Gpr125 modulates Dishevelled distribution and planar cell polarity signaling
Author(s) -
Xin Li,
Isabelle Roszko,
Diane S. Sepich,
Mingwei Ni,
Heidi E. Hamm,
Florence L. Marlow,
Lilianna SolnicaKrezel
Publication year - 2013
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.094839
Subject(s) - dishevelled , wnt signaling pathway , convergent extension , biology , microbiology and biotechnology , gastrulation , cell polarity , frizzled , signal transduction , cell , embryo , embryogenesis , genetics
During vertebrate gastrulation, Wnt/planar cell polarity (PCP) signaling orchestrates polarized cell behaviors underlying convergence and extension (C&E) movements to narrow embryonic tissues mediolaterally and lengthen them anteroposteriorly. Here, we have identified Gpr125, an adhesion G protein-coupled receptor, as a novel modulator of the Wnt/PCP signaling system. Excess Gpr125 impaired C&E movements and the underlying cell and molecular polarities. Reduced Gpr125 function exacerbated the C&E and facial branchiomotor neuron (FBMN) migration defects of embryos with reduced Wnt/PCP signaling. At the molecular level, Gpr125 recruited Dishevelled to the cell membrane, a prerequisite for Wnt/PCP activation. Moreover, Gpr125 and Dvl mutually clustered one another to form discrete membrane subdomains, and the Gpr125 intracellular domain directly interacted with Dvl in pull-down assays. Intriguingly, Dvl and Gpr125 were able to recruit a subset of PCP components into membrane subdomains, suggesting that Gpr125 may modulate the composition of Wnt/PCP membrane complexes. Our study reveals a role for Gpr125 in PCP-mediated processes and provides mechanistic insight into Wnt/PCP signaling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom